The General Case: Nontriviality.

We assume that H is #math37##tex2html_wrap_inline798#A, B#tex2html_wrap_inline799#-subquadratic at infinity, for some constant symmetric matrices #math38#A and #math39#B, with #math40#B - A positive definite. Set:
#math41#
γ : = smallest eigenvalue of  B - A (1)
λ : = largest negative eigenvalue of I>J#tex2html_wrap_indisplay810# + A . (2)

Theorem 21 tells us that if #math42#λ + γ ;SPMlt; 0, the boundary-value problem:

#math43#
#tex2html_wrap_indisplay814# = JH'(x)
x(0) = x(T)
(3)
has at least one solution #math44##tex2html_wrap_inline821#, which is found by minimizing the dual action functional:

#math45#
ψ(u) = #tex2html_wrap_indisplay823##tex2html_wrap_indisplay824##tex2html_wrap_indisplay825##tex2html_wrap_indisplay826#Λo-1u, u#tex2html_wrap_indisplay827# + N * (- u)#tex2html_wrap_indisplay828#dt (4)
on the range of Λ, which is a subspace #math46#R(Λ)L2 with finite codimension. Here

#math47#
N(x) : = H(x) - #tex2html_wrap_indisplay832##tex2html_wrap_indisplay833#Ax, x#tex2html_wrap_indisplay834# (5)
is a convex function, and

#math48#
N(x)≤#tex2html_wrap_indisplay836##tex2html_wrap_indisplay837##tex2html_wrap_indisplay838#B - A#tex2html_wrap_indisplay839#x, x#tex2html_wrap_indisplay840# + c   ∀x . (6)


#proposition65#

#proof76#

#corollary127#

We recall once more that by the integer part #math49#E[α] of #math50#α#tex2html_wrap_inline843#, we mean the #math51#a#tex2html_wrap_inline845# such that #math52#a ;SPMlt; αa + 1. For instance, if we take #math53#a = 0, Corollary 2 tells us that #math54##tex2html_wrap_inline849# exists and is non-constant provided that:

#math55#
#tex2html_wrap_indisplay851#b ;SPMlt; 1 ;SPMlt; #tex2html_wrap_indisplay852# (7)
or

#math56#
T#tex2html_wrap_indisplay854##tex2html_wrap_indisplay855#,#tex2html_wrap_indisplay856##tex2html_wrap_indisplay857# . (8)


#proof169#


#lemma204#

#proof209#